skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Long, Deryl E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ionization drives important chemical and dynamical processes within protoplanetary disks, including the formation of organics and water in the cold midplane and the transportation of material via accretion and magnetohydrodynamic flows. Understanding these ionization-driven processes is crucial for understanding disk evolution and planet formation. We use new and archival Atacama Large Millimeter/submillimeter Array observations of HCO+, H13CO+, and N2H+to produce the first forward-modeled 2D ionization constraints for the DM Tau protoplanetary disk. We include ionization from multiple sources and explore the disk chemistry under a range of ionizing conditions. Abundances from our 2D chemical models are postprocessed using non-LTE radiative transfer, visibility sampling, and imaging, and are compared directly to the observed radial emission profiles. The observations are best fit by a modestly reduced cosmic-ray ionization rate (ζCR∼10−18s−1) and a hard X-ray spectrum (hardness ratio = 0.3), which we associate with stellar flaring conditions. Our best-fit model underproduces emission in the inner disk, suggesting that there may be an additional mechanism enhancing ionization in DM Tau’s inner disk. Overall, our findings highlight the complexity of ionization in protoplanetary disks and the need for high-resolution multiline studies. 
    more » « less
  2. Abstract Observations of substructure in protoplanetary disks have largely been limited to the brightest and largest disks, excluding the abundant population of compact disks, which are likely sites of planet formation. Here, we reanalyze ∼0.″1, 1.33 mm Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations of 12 compact protoplanetary disks in the Taurus star-forming region. By fitting visibilities directly, we identify substructures in six of the 12 compact disks. We then compare the substructures identified in the full Taurus sample of 24 disks in single-star systems and the ALMA DSHARP survey, differentiating between compact (Reff,90%< 50 au) and extended (Reff,90%≥50 au) disk sources. We find that substructures are detected at nearly all radii in both small and large disks. Tentatively, we find fewer wide gaps in intermediate-sized disks withReff,90%between 30 and 90 au. We perform a series of planet–disk interaction simulations to constrain the sensitivity of our visibility-fitting approach. Under the assumption of planet–disk interaction, we use the gap widths and common disk parameters to calculate potential planet masses within the Taurus sample. We find that the young planet occurrence rate peaks near Neptune masses, similar to the DSHARP sample. For 0.01MJ/M≲Mp/M*≲0.1MJ/M, the rate is 17.4% ± 8.3%; for 0.1MJ/M≲Mp/M*≲1MJ/M, it is 27.8% ± 8.3%. Both of them are consistent with microlensing surveys. For gas giants more massive than 5MJ, the occurrence rate is 4.2% ± 4.2%, consistent with direct imaging surveys. 
    more » « less